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Collecting needles from 96 
haystacks
The vast majority (92%–98%) of the 
HIV-infected cells that persist with antiret-
roviral therapy (ART) contain proviruses 
with deletions, premature stop codons, 
or other defects that preclude production 
of infections viruses (1). An outstanding 
question for the field is whether these 
defective proviruses have a role in HIV 
persistence or ongoing inflammation (2, 
3). In this issue of the JCI, Duette, Hiener, 
and colleagues contribute to this area of 
research by showing expression of viral 
proteins from proviral sequences, even 
those from sequences with large deletions 
(4). Nonetheless, because only intact pro-
viruses can initiate viral rebound when 
treatment is interrupted, their character-
ization and quantification are paramount 
to HIV cure research (5) and are the main 
focus of the current study (4). 

The group behind the current study 
previously developed a full-length individ-

ual proviral sequencing (FLIPS) assay, with 
a paired bioinformatics pipeline, to distin-
guish intact from different forms of defec-
tive proviruses (6). As this method is cost 
and labor intensive, other researchers have 
devised and implemented multiplex drop-
let-based PCR methods to selectively quan-
tify intact proviruses (7, 8); however, scal-
ability comes at the cost of sequence-level 
resolution. Duette, Hiener, and colleagues 
achieved an impressive feat; they applied 
their intensive FLIPS assay to a large scale, 
to T cells that had been sorted into four 
maturational phenotypes (naive [Tn]; cen-
tral memory [Tcm]; transitional memory 
[Ttm]; and effector memory [Tem]) across 
a cohort of 24 participants with a wide 
range of years on ART (4).

This effort paid off. The resulting data 
showed unequal distributions of intact 
versus defective proviruses as a function 
of the T cell maturation state, confirming 
and extending previous observations (9, 
10). However, it was the deep dive into 

sequence-level data that yielded clues, 
and then evidence, revealing a mechanism 
underlying how Tem cells maintain a par-
ticularly rich reservoir of intact proviruses 
while Tcm cells show provirus depletion in 
a progressive manner. The results impli-
cate ongoing pressure by HIV-specific 
CD8+ cytotoxic T cells, also called cytotox-
ic T lymphocytes (CTLs), in shaping these 
proviral landscapes and a particular ability 
of Tem cells to evade these CTLs.

Ongoing CTL pressure and 
implications for therapeutic 
strategies
HIV infection elicits a robust virus-specif-
ic CD8+ T cell response, which suppresses 
viral replication to varying degrees — in part 
by killing infected cells. In a typical untreat-
ed infection, this response helps reduce 
viral load by a few orders of magnitude 
from an acute infection peak to a chronic 
set point. In rare cases, however, exception-
al control is achieved, with elite controllers 
maintaining undetectable viral loads with-
out the aid of ART (ref. 11). This potent 
antiviral activity raises a question: Why are 
HIV-specific CD8+ T cells unable to elimi-
nate the rare infected cells that persist once 
viral replication is abrogated by ART?

The main paradigm has been that this 
reservoir of infected cells maintains a state 
of viral latency and, thus, is invisible to 
HIV-specific CD8+ T cells. It follows that 
reactivating HIV with latency-reversing 
agents would be required to engage CD8+ 
T cells in elimination of reservoirs (12, 13). 
A series of studies, however, challenge the 
completeness of this model by providing 
evidence in support of ongoing interactions 
between HIV-specific CD8+ T cells and viral 
reservoirs in individuals on ART (14–16).

Recent advances have uncovered that, 
with time on ART, the landscape of HIV 
proviruses becomes increasingly restrict-
ed to those that are either too defective to 
produce antigen or those that are located 
in genomic regions that are unfavorable to 
transcription (e.g., gene deserts; ref. 16). 
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Ttm < Tem). The authors, thus, proposed a 
model whereby their initial observation of 
enriched frequencies of intact proviruses 
in Tem cells reflected superior Nef-medi-
ated immunoevasion in these cells (Figure 
1). They inferred that therapeutic strat-
egies to inhibit Nef may expose the HIV 
reservoirs in Tem cells to the same CD8+ 
T cell pressure reflected by Tcm cells and, 
thus, lead to reductions in HIV reservoirs 
even without therapeutic latency rever-
sal. This model is an attractive prospect in 
light of the ongoing challenges in devel-
oping safe and effective latency-revers-
ing therapeutic agents. While we are not 
aware of any clinical stage Nef-inhibitor 
drugs, preclinical programs have shown 
promise and highlight the potential for 
clinical use (18).

Spotlight on intrinsic 
properties of reservoir-
harboring cells
HIV persistence on ART takes the form 
of long-lived cells (predominately CD4+ 
T cells) with genome-integrated provi-
ruses, which undergo clonal expansions 
and contractions driven by incompletely 
understood forces (19–21). Until recent-
ly, however, consideration of the role 
of cell-intrinsic properties in HIV per-
sistence has been largely restricted to (a) 
whether the host cell is resting versus acti-
vated (the former being more conducive 
to viral latency, ref. 22), and (b) the pro-
liferative capacity of the host cell (which, 
in rare cases, is influenced by the proviral 
integration site itself; ref. 23). More recent 
studies have uncovered prosurvival char-
acteristics that allow for infected cells to 
persist by resisting virus- and/or CD8+ T 
cell–mediated cytopathicity, such as over-
expression of BCL-2 and BCL-XL (24–28). 
Through their demonstration of differ-
ential Nef-mediated MHC-I downmod-
ulation, Duette, Hiener, and colleagues 
further enriched this line of inquiry by 
uncovering another dimension of hetero-
geneity influencing proviral persistence: 
differential virus-mediated immunoeva-
sion as a function of cell-intrinsic proper-
ties (4). While studies into the mechanism 
of superior Nef-medicated immuno-
evasion in Tem cells are warranted, the 
authors allude to this resulting from high-
er general HIV gene product expression 
in Tem cells compared with that from 

In the current issue of the JCI, Duette, 
Hiener, and colleagues add considerably 
to the evidence supporting ongoing sur-
veillance of infected cells from partici-
pants on ART and highlight the potential 
of an alternative modality of therapeutic 
intervention (4). They showed progressive 
loss of proviruses possessing CD8+ T cell 
epitopes over many years of ART, provid-
ing direct evidence that these cells exert 
ongoing selective pressure. The unex-
pected finding that the ongoing selec-
tive pressure was restricted to Tcm cells, 
alongside the observation that proviral 
sequences encoding Nef were preferen-
tially maintained in Tem cells, led to the 
fascinating finding that the degree of HIV-
Nef–mediated MHC-I surface loss varied 
by host cell maturational status (Tcm < 

While this skewing occurs slowly, some 
elite controllers appear to have vanquished 
all but the above proviruses (17) — scenar-
ios that some have hailed as spontaneous 
cures. The authors of these studies imply 
that CD8+ T cells most likely exert the 
selective pressure that shapes these land-
scapes. This premise is supported by stud-
ies demonstrating that the kinetics and 
functional profiles of HIV-specific CD8+ 
T cells in ART-treated individuals reflect 
ongoing recognition of infected cells. T 
cells targeting the early gene product Nef 
appeared to be disproportionately sensi-
tive to this stimulation (14, 15), perhaps 
reflecting a limited window of time for rec-
ognition, where late gene products (e.g., 
Gag) are expressed only after Nef-mediat-
ed loss of surface MHC-I has occurred.

Figure 1. Interactions between HIV-infected cells of different maturational phenotypes and CTLs 
from participants on ART. Viral latency is a substantial but imperfect barrier to CTL engagement. 
Effector memory and naive CD4+ T cells possess the additional barriers of superior Nef-mediated 
immunoevasion and cell-intrinsic CTL resistance, respectively, which allow for higher frequencies of 
intact proviruses to persist in Tem and Tn cells. Additional layers of diversity exist within these mat-
urational subsets (depicted by cell membrane shading), and further dissecting each subset in relation 
to immunoevasion/resistance is a key frontier.
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In summary, Duette, Hiener, and col-
leagues used HIV proviral landscape anal-
ysis in different T cell subsets and found 
that Nef expression, both from intact and 
defective proviruses, promotes immune 
evasion from CD8+ T cell killing in this 
highly proliferative cell population. This 
study highlights the power of HIV pro-
viral landscape analysis, which required 
sequence analysis to reveal the effect of 
viral gene expression on HIV persistence 
and immune surveillance.
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