Development of neuromuscular junctions on small mesenteric arteries of the rat

SE Luff - Journal of neurocytology, 1999 - Springer
SE Luff
Journal of neurocytology, 1999Springer
This ultrastructural study has investigated the development of the innervation of second
order mesenteric arteries from the ileum region of the rat intestine, particularly, the time
course of the formation of the plexus of varicose axons around the arteries, and the
formation of autonomic neuromuscular junctions. The time points studied were postnatal
days-2,-4,-8 and-13. This study has revealed that the formation of neuromuscular junctions
with mature structural characteristics occurred at~ 2 weeks postnatal. The plexus of varicose …
Abstract
This ultrastructural study has investigated the development of the innervation of second order mesenteric arteries from the ileum region of the rat intestine, particularly, the time course of the formation of the plexus of varicose axons around the arteries, and the formation of autonomic neuromuscular junctions. The time points studied were postnatal days-2, -4, -8 and -13. This study has revealed that the formation of neuromuscular junctions with mature structural characteristics occurred at ~2 weeks postnatal. The plexus of varicose axons developed predominantly between day-4 and day-13, which agrees with previous light microscopy studies of catecholamne containing nerves around similar vessels. At day-2 and day-4, the axons lacked varicosities and were mainly contained in large bundles located in the outer region of the adventitia. The medio-adventitial border consisted of a dense layer of extracellular matrix and fibroblasts. By day-8, there were more axons and most were distributed in smaller bundles. Some had grown through the adventitia to lie at the medio-adventitial border and axon varicosities were also observed. Some varicosities had formed rudimentary neuromuscular contacts. By day-13, there were significantly more contacting varicosities compared to day-8. They were structurally more mature, being twice the size with three times the number of synaptic vesicles and consistently contained a mitochondrion. Conversely, the neuromuscular contact areas were similar at both time points. Some organisation of the synaptic vesicles associated with the prejunctional membrane, was evident in varicosities at day-8 but there were no presynaptic membrane specialisations similar to the putative neurotransmitter release sites found at mature skeletal neuromuscular junctions. The aggregation of small vesicles at the prejunctional membrane was more pronounced in neuromuscular junctions at day-13 with some having presynaptic membrane specialisations. Comparison of the structure of developing autonomic neuromuscular junctions with that of skeletal neuromuscular junctions has revealed a number of similarities.
Springer